[1]

- 3. (a) A student investigates the refraction of light in glass. She measures the angle of refraction for various angles of incidence for light passing from air into glass. She then plots a graph of 'Sine (angle of incidence)' against 'Sine (angle of refraction)'.
  - (i) Sketch, on the axes below, the graph that she might expect.



Sine angle of refraction.

(ii) State whose law this confirms.

[1]

(b) The diagram shows a ray of light passing through a semicircular block of dense glass.



(i) Determine the angle of incidence which would give an angle of refraction of 90°.

(ii) What name is given to the angle calculated in (b) (i)?

[1]

(iii) Calculate the radius of the glass block given that the time taken for the light to pass through it is 0.34 ns. [Refer to the data on page 2]

[4]

**4.** Monochromatic (single wavelength) light is diffracted through a narrow single slit onto a distant screen. The diffraction pattern observed on the screen is shown below.



- (a) On the graph axes sketch a graph of intensity of light against distance from centre for the above diffraction pattern. [4]
- (b) The single slit is now placed directly in front of a double slit arrangement as shown. (The diagram is not to scale).



(i) Explain the purpose of the single slit in this arrangement.

[1]

| (ii)  | A student wishes to produce a pattern of light and dark fringes of spacing $2.0$ mm on the screen. He uses light of wavelength $5.9 \times 10^{-7}$ m and the spacing between the double slits is $0.50$ mm. Calculate the distance from the double slits to the screen. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                                                                                                                          |
|       |                                                                                                                                                                                                                                                                          |
|       |                                                                                                                                                                                                                                                                          |
|       | [3]                                                                                                                                                                                                                                                                      |
| (iii) | Explain briefly why the dark bands appear on the screen.                                                                                                                                                                                                                 |
|       |                                                                                                                                                                                                                                                                          |
|       |                                                                                                                                                                                                                                                                          |
|       | [2]                                                                                                                                                                                                                                                                      |

(541-01) **Turn over.** 

**6.** A stretched string can carry both progressive and stationary waves. State how the *(a)* amplitude varies with position along the string for each of these waves. Progressive wave: Stationary wave: (ii) Explain how the energy flow for a progressive wave differs from that for a stationary wave. [2] Two points (P and Q) on a progressive wave differ in phase by 90°. The distance between *(b)* them is 0.30 m and their period of oscillation is 0.050 s. **P** is shown on the following sketch. (i) Label a possible position for  $\mathbf{Q}$  on the above sketch. [1] (ii) Define wavelength, and calculate its value for this wave.

|     | (iii)<br>       | Calculate the speed of the wave.                                                                                                                                                       |                     |
|-----|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|     | (iv)            | The amplitude of the wave is 0.020 m. Calculate the mean speed of particle one complete cycle.                                                                                         | [3]<br><b>P</b> ove |
| (c) | vibra           | following apparatus is set up to study stationary waves in a string of length 1.81 ation generator is set to 10.4 Hz initially in order to produce a stationary wave without as shown. | [2]<br>m. The       |
|     | ation<br>erator | 1·8 m                                                                                                                                                                                  |                     |
|     | (i)             | Label <b>a node</b> on the above sketch.                                                                                                                                               | [1]                 |
|     | (ii)            | Show on the diagram three points <b>R</b> , <b>S</b> and <b>T</b> that oscillate in phase.                                                                                             | [1]                 |
|     | (iii)           | Calculate the speed of the wave.                                                                                                                                                       |                     |
|     |                 | When the frequency of the vibration generator is <b>doubled</b> , the number of                                                                                                        | [2]                 |

[3]

(c)

|    | The i | resistivity, $\rho$ , of a material is defined by the equation $\rho = \frac{RA}{l}$                                                                                                                                              |
|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (i)   | Show that the S.I. unit of resistivity is $\Omega$ m. [1]                                                                                                                                                                         |
|    | (ii)  | The resistivity of the alloy <i>constantan</i> is $4.9 \times 10^{-7} \Omega$ m. Calculate the resistance between opposite faces of a constantan cube of $0.010 \mathrm{m} \times 0.010 \mathrm{m} \times 0.010 \mathrm{m}$ . [2] |
| (i | iii)  | Give <b>two</b> reasons why it would not be possible to measure this resistance using ordinary laboratory meters and connecting wires. [2]                                                                                        |
|    | iv)   | A $3.0~\Omega$ resistor is to be made by winding a length of constantan wire on to a glass rod. The <b>diameter</b> of the wire is $4.0\times10^{-4}$ m. Calculate the length of wire needed.                                     |

[3]

- (b) In the circuit shown the internal resistance of the battery is negligible.
  - (i) Show in clear steps that the combined resistance of the resistors is  $5.0 \Omega$ .



| <br> | <br> | <br> |  |
|------|------|------|--|
| <br> | <br> | <br> |  |
| <br> | <br> | <br> |  |
| <br> | <br> | <br> |  |
|      |      |      |  |

(ii) Calculate

| (I) | the current $I_1$ , | [1 | [] |
|-----|---------------------|----|----|
|     |                     |    |    |

- (II) the p.d. measured by the voltmeter, [1]
- (III) the current  $I_2$ . [2]

[1]

*(c)* 



(i) Three  $3.0\Omega$  resistors are connected as shown across a battery of negligible internal resistance. The middle resistor is fitted with a sliding contact as shown in the top diagram. Calculate

(I) the lowest possible p.d. between  $\mathbf{A}$  and  $\mathbf{B}$ .

- (II) the highest possible p.d. between **A** and **B**.
- (ii) Another  $3.0~\Omega$  resistor is added as shown in the lower diagram. State and explain whether it will increase or decrease

| (I) | the lowest possible p.d. between <b>A</b> and <b>B</b> , |   |
|-----|----------------------------------------------------------|---|
|     | [2]                                                      | ] |

|       |      | <br>      |       |       | <br> | <br>      | <br>     |
|-------|------|-----------|-------|-------|------|-----------|----------|
|       |      |           |       |       |      |           |          |
|       |      | <br>      |       |       | <br> | <br>      | <br>     |
|       |      |           |       |       |      |           |          |
| ••••  | •••• | <br>••••• | ••••• | ••••• | <br> | <br>      | <br>•••• |
|       |      |           |       |       |      |           |          |
| ••••• | •••• | <br>••••• |       |       | <br> | <br>••••• | <br>     |
|       |      | <br>      |       |       | <br> | <br>      | <br>     |
|       |      |           |       |       |      |           |          |

- $3.0 \Omega$   $3.0 \Omega$   $3.0 \Omega$   $3.0 \Omega$
- (II) the highest possible p.d. between  $\mathbf{A}$  and  $\mathbf{B}$ .

7. (a) Einstein's photoelectric equation may be written as

$$K.E._{max} = hf - \phi$$

Give the meanings of the following in terms of energy.

(i)  $K.E._{max}$  [2]

(ii) hf

(iii)  $\phi$  [1]

(b) A graph of  $K.E_{max}$  against frequency of light is drawn for a caesium surface, from experimental data.



| (i)   | Explain why no data can be obtained for frequencies of less than $4.6 \times 10^{14}$ Hz.                                                                                           | [1]          |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (ii)  | Calculate the gradient of the line, showing your working clearly.                                                                                                                   | [3]          |
|       |                                                                                                                                                                                     |              |
| (iii) | (I) What physical quantity does this gradient represent?                                                                                                                            | [1]          |
|       | (II) Use Einstein's equation to justify this.                                                                                                                                       | [1]          |
| (iv)  | Determine from the graph the work function of caesium.                                                                                                                              | [2]          |
| (v)   | Using data from the graph, and referring to the data on page 2, calculate the <i>stopotential</i> for electrons ejected from caesium by light of frequency $6.0 \times 10^{14}$ Hz. | oping<br>[2] |
| (vi)  | Draw on the grid a line which might be obtained for a metal with a larger function than caesium                                                                                     | work         |

## **QUESTION 7 CONTINUES ON PAGE 18**

(542-01) **Turn over.** 

(c) The photoelectric effect shows light behaving as particles. The diagram below shows apparatus in which particles can be seen behaving as waves.



| (i) | Insert the missing label. | [1 | .1 |
|-----|---------------------------|----|----|
| (-/ |                           | L= |    |

- (ii) Describe what can be seen on the screen. [2]
- (iii) Which wave property does this demonstrate? [1]